
Title: Simulating crop root systems using OpenSimRoot

Running Head: OpenSimRoot

Authors: Ernst D Schäfer1, Markus R Owen1, Johannes Postma,2 Christian Kuppe2, Christopher K

Black3, Jonathan P Lynch3

1 University of Nottingham, University Park Campus, Nottingham, NG7 2RD, United Kingdom

2 Forschungszentrum Jülich, GmbH, 52425 Jülich, Germany

3 Pennsylvania State University, 201 Old Main, University Park, Pennsylvania 16802, United States of

America

Corresponding author email address: schaferscientificmodelling@protonmail.com

Summary:

Functional-structural plant models are valuable modelling tools in analysing plant development. A

functional-structural plant model combines a three-dimensional representation of plant structure with

models for physiological functions in order to better understand plant development. We present a

guide to simulating crop root systems with OpenSimRoot, a feature-rich, highly cited and open source

functional-structural root architecture model. We describe in detail how to create your own input files

in conjunction with some examples. The aim of this guide is to highlight the potential of

computational modelling in biology and to make modelling more accessible to the plant science

community.

Keywords:

plant development; root system architecture; mathematical modelling; computational

modelling; organ growth; nutrient uptake; functional structural plant modelling;

mailto:schaferscientificmodelling@protonmail.com

1. Introduction

Functional-structural root system architecture models combine a three-dimensional representation of

root systems with models of physiological functions and are a key tool in the study of root systems (1).

Instead of focusing on the effects of single genes at a cellular or even plant organ scale, root system

architecture models help researchers gain insight in the effects of phenes on overall root system and

crop development. The earliest versions of these models represented pre-defined root architectures, but

after integrating new insights in root responses to local soil conditions and plant signalling

mechanisms, they are presently able to simulate root growth in response to dynamic and

heterogeneous environments and incorporate feedbacks that regulate root and shoot development (2, 3,

4, 5, 6, 7, 8, 9).

Functional-structural root system architecture models are often used to generate hypotheses about the

effects of root architectural traits on root distribution in the soil and on the ability of root systems to

extract resources from dynamic soil environments (10, 11). They can also provide insights into the

viability of different foraging strategies in scenarios where there is competition between different

plants or there are multiple resource constraints (12, 13). Another useful feature of models is that they

allow researchers to vary variables that are very difficult or even outright impossible to control in field

conditions and evaluate the utility of traits in these scenarios. Due to advances in computing,

simulating root systems takes a smaller and smaller fraction of the time it takes to grow a similar root

system in the field. This means that simulation models can explore parameter spaces much faster than

would ever be possible through field experiments, even more so because researchers using simulation

models have perfect control over external factors such as atmospheric and soil conditions, which is not

the case for field studies.

Experimental biologists increasingly depend on theoreticians to build models and use them to test

hypotheses. In order to make models more accessible to experimentalists, as well as facilitate the

sharing of expertise across different modelling teams, recent years have seen efforts to make source

code of published models available, i.e. open source (14). This allows researchers to learn from each

other’s expertise, to better assess the relevant modelling assumptions and to correct errors, compare

results (15) and share ideas.

OpenSimRoot allows researchers to simulate root systems based on growth, branching and functioning

rules for different root classes. It can model photosynthesis, carbon allocation, growth responses to

carbon shortages, nutrient and water flows through the soil, nutrient and water uptake by roots,

nutrient stress responses, root hairs, root cortical aerenchyma formation, root cortical senescence, plant

respiration, root exudation, root responses to local nutrient conditions and many other processes that

are relevant in plant development. Although a general description of OpenSimRoot has been published

(14), details on the implementation of the various models are encapsulated in individual modules and

can currently only be understood by studying the source code. Rather than providing detailed

descriptions of every single module, this document aims to provide readers with a comprehensive

overview of all the information needed to create and run OpenSimRoot models for their own scientific

purposes. It is also meant as an introduction for aspiring OpenSimRoot developers who wish to add

new models and functionality to answer questions it was previously not possible to address. Finally, it

explains how to use the graphical user interface (GUI) that was created to make creating new

OpenSimRoot models easier and more convenient.

The code of OpenSimRoot is modular, and allows different models to be constructed based on an

XML metalanguage which describes what modules will be used, i.e. what processes will be simulated.

The input files thereby are significantly more complicated than a simple parameter list. To define a

model in OpenSimRoot, the user must create an input file that specifies which sub-models to use,

specifies which root classes are being simulated, defines the branching and growth rules and contains

all needed parameters. Because users can define new models without making changes to the source

code, OpenSimRoot is not a model, but a flexible modelling and simulation tool. Section 2 details how

to prepare your system for running OpenSimRoot. Section 3 explains how to run OpenSimRoot and

provides detailed instructions for all the steps needed to create an input file, and Section 4 includes

supplementary notes.

2. Materials

You can run OpenSimRoot by downloading an executable from the website. Executables for Windows

and Linux are provided. Many users may instead want to download the code and compile it

themselves, so we provide here a short instruction. OpenSimRoot input files use the XML standard,

which will be explained briefly in this document. Various tools are available to make creating input

files easier, as well as a graphical user interface (GUI) that allows the creation of input files from

scratch, see section 3.8. These tools require Python to be installed and can be downloaded from a

public repository. Open source C++ compilers and Python are available for free, as is Git, which we

use and recommend as a version control program.

2.1. Required software: C++ compiler

To compile the code the user needs a C++ compiler and probably software that can manage the

compilation processes. Makefiles are currently provided which can be used with the make command,

but loading the code in a correctly setup IDE such as Visual Studio or Eclipse CDT also works. The

code compiles with GCC, MINGW, CLANG and MSVC (Visual Studio), provided they are current

and support the C++14 standard. Windows users may download and install a C++ compiler, for

example from https://gcc.gnu.org/ or https://visualstudio.microsoft.com/. Linux and Mac users should

find that a C++ compiler is already included with their operating system or may install them through

their application repositories. In recent Windows versions, the Windows-Subsystems for Linux (WSL)

can be enabled, and the Microsoft application store provides Linux distributions including the ability

to use the distribution provided compilers.

2.2. Source code

Download the OpenSimRoot source code from https://gitlab.com/rootmodels/OpenSimRoot/-

/archive/master/OpenSimRoot-master.zip and unpack it in the directory where you wish to install

OpenSimRoot.

https://gcc.gnu.org/
https://visualstudio.microsoft.com/
https://gitlab.com/rootmodels/OpenSimRoot/-/archive/master/OpenSimRoot-master.zip
https://gitlab.com/rootmodels/OpenSimRoot/-/archive/master/OpenSimRoot-master.zip

Users familiar with Git should use it to get the latest OpenSimRoot code updates. After creating an

account on https://gitlab.com/ and setting up an SSH key, the code can be cloned using git clone

git@gitlab.com:rootmodels/OpenSimRoot.git.

2.3. Compile OpenSimRoot

To compile OpenSimRoot, follow these steps:

1. Open a terminal/command window in the OpenSimRoot directory. On Windows this is done

by typing cmd in the start menu and then using the cd command to navigate to the

OpenSimRoot directory, or by holding shift and right clicking in the OpenSimRoot directory

and selecting "Open command window here" from the context menu. On Linux, right click

in the OpenSimRoot directory and select "Open terminal here" from the context menu.

2. Use make all in the OpenSimRoot/StaticBuild or OpenSimRoot/StaticBuild_win64

directory. Alternatively, execute the command bash build.sh (in the top-level directory). See

note 1. Note that build_win64.sh is not provided for Windows users, but for those that want

to build Windows executables on Linux systems using the MinGW GCC compiler.

3. To clean up temporary files use cleanup.sh.

2.4. Test OpenSimRoot

In the OpenSimRoot directory, either in a command window (cmd, or better powershell in Windows)

or terminal (Linux/macOS), run OpenSimRoot/StaticBuild/OpenSimRoot (Linux/macOS) or

OpenSimRoot\StaticBuild_win64\OpenSimRoot.exe -h (Windows), you should see the following

output:

E:\Werk\OpenSimRoot>OpenSimRoot\StaticBuild_win64\OpenSimRoot.exe -h

Usage: OpenSimRoot [OPTIONS] [FILE]

OpenSimRoot simulates a model defined in FILE

 -f, --file specify simulation file, default last argument

 -h, --help or /? print this help message

https://gitlab.com/
mailto:git@gitlab.com:rootmodels/OpenSimRoot.git

 -v be verbose with warnings

 -q be quite with warnings

 -l, --list print list of registered functions

 -V, --verify Experimental function for verifying input files

 -ww warnings to screen

Examples:

 OpenSimRoot -h Prints this message

 OpenSimRoot runModel.xml Runs the SimRoot model

Support at j.postma@fz-juelich.de

Built on Jul 17 2019, git 2ff025e112

Licensed to you under the GPLv3 license.

There are no warnings.

Simulation took (hours:minutes:seconds): 0:0:0

Now use bash runTests.sh. This will run a number of test simulations to ensure various parts of the

code are functioning correctly. One of the tests depends on the programming language R being

installed. If R is not installed on your system, use bash runTestsEngine.sh and bash

runTestsModule.sh to run all the tests that do not depend on R. If the tests complete correctly,

finished testing engine with error status 0, finished testing modules with error status 0 and exiting with

error status 0 will be printed to screen.

3. Methods

OpenSimRoot implements different sub-models for processes that are required to model root system

development and functioning. They include models for root growth and branching, root nutrient

uptake, soil water and nutrient transport, photosynthesis, nutrient stress and many others. The model is

defined by the input file, which specifies which models are included, what root classes are simulated,

which branching rules are used, as well as plant and environmental parameters and simulation settings.

We first describe how to run OpenSimRoot, assuming you already have an input file available. We

then describe all the operations needed to create any input file you might need in detail. First, we

describe how to add or remove models, then we describe how to change parameters, then we describe

how to create a new model and finally we explain how to add or remove root classes.

3.1. Running OpenSimRoot

Windows: Create a folder where you wish the output files to be saved. Open a command window there

and use C:\OpenSimRoot\OpenSimRoot\StaticBuild_win64\OpenSimRoot.exe

C:\InputFiles\inputFile.xml where "InputFiles" is the directory where your input file is located and

"inputFile.xml" is the input file you wish to run. Note that we assumed copy of OpenSimRoot is

located in C:, if this is not the case replace this by the appropriate directory. Alternatively, double-

click OpenSimRoot.exe, located in C:\OpenSimRoot\OpenSimRoot\StaticBuild_win64\. This will

open a file selection browser. Use this to select the input file you want to run. The output files will be

created in the same directory as the input file.

Linux/macOS: Create an empty directory where you wish the output files to be saved. Open a terminal

there and type ~/OpenSimRoot/OpenSimRoot/StaticBuild/OpenSimRoot

~/InputFiles/inputFile.xml, where "InputFiles" is the directory where your input file is located and

"inputFile.xml" is the input file you wish to run. Note that we assumed copy of OpenSimRoot is

located in your home directory, if this is not the case insert the appropriate path in the command

above.

If there is any problem with the input file, the simulation will stop and display an error message, see

note 2 for common errors and solutions.

OpenSimRoot can generate different types of output, depending on what is specified in the input files.

The tabled_output.tab is a tab-separated text file that contains the values of plant-scale state variables

at regular intervals. It lists the plant dry weight, total root length, total nutrient uptake, etc. We

recommend you always let OpenSimRoot generate this file. The file contains 6 columns, which contain

the following:

• The first column contains the name of the variable.

• The second column contains the time.

• The third column contains the value of the variable at the given time.

• The fourth column contains the rate at which the variable changes, if applicable.

• The fifth column contains the unit of the variable.

• The sixth column contains the path of the variable. This is used to distinguish different

variables that have the same name, such as the total uptakes of different nutrients.

See note 3 for some sample tabled output. The tabled output can be imported into Excel or a similar

program for processing and creating figures. R users can use the read.table(filename, header=T)

command. If R is installed, a quick plot can be created by combining the fgrep command with the

script named plot in the directory OpenSimRoot/scripts. For example cat tabled_output.tab | grep -

f ‘plantDryWeight’ | plot will plot the plant dry weight against the time.

OpenSimRoot can also save the geometry of the root system at specified intervals, including the values

of root segment specific state variables. It can also save three-dimensional information about the soil.

The VTU and VTP formats are available for the root system geometry, while VTU is used for the soil.

Programs like ParaView can be used to visualise this data in 3D and see the distribution of various

state variables across the root system and render videos of the growing root system. See figure 1 for a

visualisation of a simulated maize root system created with ParaView.

3.2. Creating input files

Included with the OpenSimRoot code are models for barley, bean, maize and squash. Simulating these

species with slightly different parameters is straightforward. They are a good point of departure for

creating new input files for other species. Note that parametrisation of a new species requires a

significant amount of work, given the many parameters used. OpenSimRoot input files are written in

the XML markup language format; see note 4 for an explanation of the structure of XML files.

OpenSimRoot looks for certain types of tags in input files; see note 5 for an overview of all the tag

types and their usage.

Section 3.8 explains how to download and run the graphical user interface (GUI) that was created to

make creating OpenSimRoot models easier. It provides a convenient tool that automates the more

tedious document editing operations described in the preceding sections. While it is possible to create

models using section 3.8 and the GUI, we recommend that you do read the preceding sections first in

order to gain a better understanding of the structure of OpenSimRoot input files.

3.3. Activating or deactivating modules

OpenSimRoot contains a lot of different models that simulate different processes, not all of which are

required for every simulation study. A set of models that simulate a certain feature is referred to as a

module. See note 6 for an overview of the different modules. Every module has at least one associated

template file which can be found in the directory OpenSimRoot/inputFiles/templates. Including a

template file in the input file through reference (or copying the contents) means that the associated

module is included in the simulation. For example, to include root hairs in the simulation, add the line

<SimulaIncludeFile fileName="templates/plantTemplate.IncludeRootHairs.xml"/>

to the input file. Removing a module is done by deleting the reference to the associated template(s). Of

course, different modules require different parameters. However, since including unused parameters

does not alter the simulation behaviour, all parameters are included by default, and adding or

removing modules can be done by adding or removing tags that refer to the relevant template. To see

all available templates, please see the OpenSimRoot/inputFiles/templates directory.

3.4. Editing parameters

To edit parameters, we follow these steps.

• It is probably wise to make a local copy of the InputFiles directory, or use a version control

tool to track your changes. With a tool like diff or Meld you can display changes.

• We first decide in which file(s) we want to change parameters. Let’s assume that we want to

change a parameter in the maize model.

• Open the file runMaize.xml. It should look something like this (comments removed for the

sake of readability):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<?xml-stylesheet type="text/xsl" href="XML/treeview.xsl"?>

<SimulationModel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../scripts/XML/SimulaXMLSchema.xsd">

 <SimulaBase name="soil"></SimulaBase>

 <SimulaBase name="plants">

 <SimulaBase name="maize" objectGenerator="seedling">

 <SimulaConstant name="plantType" type="string">maize-aerenchyma</SimulaConstant>

 <SimulaConstant name="plantingTime" unit="day" type="time">0</SimulaConstant>

 <SimulaConstant name="plantPosition" type="coordinate">0 -2 0</SimulaConstant>

 </SimulaBase>

 </SimulaBase>

 <SimulaIncludeFile fileName="plantParameters/Maize/Maize/simulationControlParameters.xml"/>

 <SimulaIncludeFile fileName="templates/plantTemplateFullModel.xml"/>

 <SimulaIncludeFile fileName="environments/WageningseBovenBuurt/WageningseBovenBuurt-

maize.xml"/>

 <SimulaIncludeFile fileName="templates/plantTemplate.IncludeGeometry.xml" />

 <SimulaIncludeFile fileName="templates/plantTemplate.IncludeDryweight.xml" />

 <SimulaIncludeFile fileName="templates/configurationCarbon.xml"/>

 <SimulaIncludeFile fileName="templates/plantTemplate.IncludeStress.xml"/>

 <SimulaIncludeFile fileName="templates/plantTemplate.IncludeRootHairs.xml"/>

 <SimulaIncludeFile fileName="templates/plantTemplate.IncludeAerenchyma.xml"/>

 <SimulaIncludeFile fileName="templates/plantTemplate.IncludeRootLengthProfile.xml"/>

 <SimulaBase name="rootTypeParameters" >

 <SimulaIncludeFile fileName="plantParameters/Maize/H99/maize.xml"/>

 <SimulaIncludeFile fileName="plantParameters/Maize/W64a/maize.xml"/>

 <SimulaIncludeFile fileName="plantParameters/Maize/36H56/maize.xml"/>

 <SimulaIncludeFile fileName="plantParameters/Maize/Maize/maize.xml"/>

 </SimulaBase>

</SimulationModel>

• Since parameters are spread over different files, we need to locate the parameter that we want

to change inside the correct file.

• We note down the plant type, simulation settings file and environment parameter file. For this

file, these are maize-aerenchyma (line 7),

plantParameters/Maize/Maize/simulationControl-Parameters.xml (line 12) and

environments/WageningseBovenBuurt/WageningseBovenBuurtmaize.xml (line 14).

• If we want to change a plant parameter, we have to find the file that contains the parameters

for plants of the type maize-aerenchyma in the plantParameters directory. In this case, it is

the file named plantParameters/Maize/Maize/maize.xml. The parameter we want to change

is either in this file, or one of the files referenced at the bottom of this file. The references will

look like this:

<SimulaIncludeFile fileName="plantParameters/Maize/Maize/nitrate.xml"/>

For example, parameters related to root hairs will be in the file named

plantParameters/Maize/-Variant/rootHairs.xml that is referenced at the bottom of the file

plantParameters/Maize/-Maize/maize.xml.

• If we want to change one of the simulation settings, such as which outputs are generated or the

simulation time, we look for the relevant parameter in

plantParameters/Maize/Maize/simulationControlParameters.xml.

• If we want to change an environment parameter, it will either be in

environments/WageningseBovenBuurt/WageningseBovenBuurt-maize.xml or one of the

files referenced in this file.

• Once we have located the parameter, we alter it. The exact change needed depends on the type

of parameter. For parameters of the SimulaConstant type, which look like this:

<SimulaConstant name="density" unit="g/cm3">0.094</SimulaConstant>

 we change the value in between the opening and closing tag (0.094) to the desired value.

• Parameters of the type SimulaTable, which look like this:

<SimulaTable name_column1="time since creation"

unit_column1="day"name_column2="growthRate" unit_column2="cm/day">0 4.5 28 4.5 38 0. 1000

0.</SimulaTable>

are used for parameters whose value depends on something else like time or depth, so they are

written as pairs of values. In the example given, the value of the parameter is equal to 4.5 for

the first 28 days, then it linearly decreases to 0 over the next 10 days and then it remains

constant at zero. This is used for parameters whose value depends on something else like time

or depth. Extra whitespace or newline characters are ignored so the above is equivalent to this:

<SimulaTable name_column1="time since creation"

unit_column1="day"name_column2="growthRate" unit_column2="cm/day">

0 4.5

28 4.5

38 0.

1000 0.

</SimulaTable>

• For parameters of the type SimulaStochastic, which look like this:

<SimulaStochastic name="branchingFrequency" unit="cm" distribution="uniform" minimum="0.05"

maximum="0.25" />

we have to provide a distribution and associated values, such as the minimum, maximum,

mean and standard deviation of the distribution.

• After entering the parameter, save the file.

3.5. Advanced editing of parameters

In many cases parameter types are interchangeable, meaning that when a parameter is declared as a

SimulaConstant, it may be replaced by a SimulaTable or SimulaStochastic (or even by a function,

which we do not describe here). In rare cases when the math in the code demands it to be a constant,

you will be given an error message when running the model.

One can add random noise to parameters or state variables by adding a SimulaStochastic tag with the

name multiplier as a subtag to the tag in question.

<SimulaTable name_column1="time since creation" unit_column1="day"

name_column2="growthRate" unit_column2="cm/day">0 4.5 28 4.5 38 0. 1000 0.

 <SimulaStochastic name="multiplier" distribution="normal" mean="0.2" stddev="0.1" />

</SimulaTable>

3.6. Creating new models for different genotypes, species and environments

Now that we have shown how to change parameters, we will show how to change which files are

referenced and then we will show how to add and remove root classes. These operations are essential

for creating the input files for a new model, for example when we want to simulate a new species.

Let’s assume we have discovered a new crop species named unmaize that we want to create a model

for.

• Open the OpenSimRoot/InputFiles directory.

• Make a copy of the file runMaize.xml and rename it runUnmaize.xml. Open the latter file in

your favourite text editor.

• We already saw this file in the previous section. First, we change the name. In line 7, change

maize-aerenchyma to unmaize. This will let OpenSimRoot know that the plant we are

simulating is unmaize, not maize.

• Right now, the file includes the environment parameters of the Wageningse bovenbuurt,

which is not what we want. Change line 14 to

<SimulaIncludeFile fileName="environments/unmaize/unmaize.xml"/>

• Next, decide on which modules you wish to include in the simulation. We will keep them

largely as is, but add phosphorus to the simulation. Insert the following above line 17:

<SimulaIncludeFile fileName="templates/plantTemplate.IncludePhosphorusBC.xml" />

This tells OpenSimRoot to load the phosphorus template, so phosphorus uptake is simulated

using the Barber-Cushman model (BC).

• We are not interested in aerenchyma or the root length profile, so delete the lines referencing

their templates, lines 20 and 21 in the listed file above.

• We also do not need the parameters for all the maize variants, so delete lines 23-26 and insert

the following in their place:

<SimulaIncludeFile fileName="plantParameters/Unmaize/Unmaize/unmaize.xml"/>

• Your file should now look like this

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<?xml-stylesheet type="text/xsl" href="XML/treeview.xsl"?>

<SimulationModel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../scripts/XML/SimulaXMLSchema.xsd">

 <SimulaBase name="soil"></SimulaBase>

 <SimulaBase name="plants">

 <SimulaBase name="maize" objectGenerator="seedling">

 <SimulaConstant name="plantType" type="string">unmaize</SimulaConstant>

 <SimulaConstant name="plantingTime" unit="day" type="time">0</SimulaConstant>

 <SimulaConstant name="plantPosition" type="coordinate">0 -2 0</SimulaConstant>

 </SimulaBase>

 </SimulaBase>

 <SimulaIncludeFile

fileName="plantParameters/Unmaize/Unmaize/simulationControlParameters.xml"/>

 <SimulaIncludeFile fileName="templates/plantTemplateFullModel.xml"/>

<SimulaIncludeFile fileName="environments/Unmaize/unmaize.xml"/>

 <SimulaIncludeFile fileName="templates/plantTemplate.IncludeGeometry.xml" />

 <SimulaIncludeFile fileName="templates/plantTemplate.IncludeDryweight.xml" />

 <SimulaIncludeFile fileName="templates/plantTemplate.IncludePhosphorusBC.xml" />

 <SimulaIncludeFile fileName="templates/configurationCarbon.xml"/>

 <SimulaIncludeFile fileName="templates/plantTemplate.IncludeStress.xml"/>

 <SimulaIncludeFile fileName="templates/plantTemplate.IncludeRootHairs.xml"/>

 <SimulaBase name="rootTypeParameters" >

 <SimulaIncludeFile fileName="plantParameters/Unmaize/Unmaize/unmaize.xml"/>

 </SimulaBase>

</SimulationModel>

• Now we need to make sure that these new files we are referencing actually exist. Open the

environments directory and copy the folder WageningseBovenBuurt, renaming it Unmaize.

Then open it. Change the name of the WageningseBovenBuurt-maize.xml file to

unmaize.xml. Then open it. It should look something like this, after deleting all commented-

out lines:

<?xml version="1.0" encoding="UTF-8"?>

<SimulationModelIncludeFile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../../../scripts/XML/SimulaXMLSchema.xsd">

 <SimulaBase name="environment">

 <SimulaBase name="dimensions">

 <SimulaConstant name="minCorner" type="coordinate">-13 -150 -30 </SimulaConstant>

 <SimulaConstant name="maxCorner" type="coordinate">13 0 30 </SimulaConstant>

 <SimulaConstant name="resolution" type="coordinate">1 1 1 </SimulaConstant>

 </SimulaBase>

 <SimulaBase name="soil">

 <SimulaTable name_column1="depth" unit_column1="cm" name_column2="bulkDensity"

unit_column2="g/cm3">0 1.24 -5 1.24 -16 1.29 -30 1.42 -47 1.40 -65 1.51 -200 1.51 </SimulaTable>

 </SimulaBase>

 </SimulaBase>

 <SimulaIncludeFile fileName="environments/WageningseBovenBuurt/water.xml" />

 <SimulaIncludeFile fileName="environments/WageningseBovenBuurt/atmosphere.xml" />

 <SimulaIncludeFile fileName="environments/WageningseBovenBuurt/nitrate.xml" />

 <SimulaIncludeFile fileName="environments/WageningseBovenBuurt/phosphorus.xml" />

 <SimulaIncludeFile fileName="environments/WageningseBovenBuurt/potassium.xml" />

 <SimulaIncludeFile fileName="environments/WageningseBovenBuurt/organic.xml" />

</SimulationModelIncludeFile>

• We now note something very important; this file still refers to the Wageningse bovenbuurt soil

files in lines 13-18! We replace WageningseBovenBuurt with Unmaize so that the correct

files are referenced. Note also that the relative location referenced is not relative to this file,

but to the base file! Our file should now look like this:

<?xml version="1.0" encoding="UTF-8"?>

<SimulationModelIncludeFile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../../../scripts/XML/SimulaXMLSchema.xsd">

 <SimulaBase name="environment">

 <SimulaBase name="dimensions">

 <SimulaConstant name="minCorner" type="coordinate">-13 -150 -30 </SimulaConstant>

 <SimulaConstant name="maxCorner" type="coordinate">13 0 30 </SimulaConstant>

 <SimulaConstant name="resolution" type="coordinate">1 1 1 </SimulaConstant>

 </SimulaBase>

 <SimulaBase name="soil">

 <SimulaTable name_column1="depth" unit_column1="cm" name_column2="bulkDensity"

unit_column2="g/cm3">0 1.20 -20 1.20 -42 1.42 -200 1.42 </SimulaTable>

 </SimulaBase>

 </SimulaBase>

 <SimulaIncludeFile fileName="environments/Unmaize/water.xml" />

 <SimulaIncludeFile fileName="environments/Unmaize/atmosphere.xml" />

 <SimulaIncludeFile fileName="environments/Unmaize/nitrate.xml" />

 <SimulaIncludeFile fileName="environments/Unmaize/phosphorus.xml" />

 <SimulaIncludeFile fileName="environments/Unmaize/potassium.xml" />

 <SimulaIncludeFile fileName="environments/Unmaize/organic.xml" />

</SimulationModelIncludeFile>

• Navigate to the plantParameters directory and create a new directory named Unmaize there.

Now open the Maize directory and copy it into the Unmaize directory, you have just created,

naming the copy Unmaize. You should now have a directory with path

plantParameters/Unmaize/Unmaize, open this. Rename the file named maize.xml to

unmaize.xml and open it.

• Near the top of the file, right after the opening SimulationModelIncludeFile tag, you will

find the following tag:

<SimulaBase name="maize−aerenchyma">

This means that all the parameters inside this tag are for plants of the type maize-

aerenchyma. However, our plant is called unmaize, so we should change this line to

<SimulaBase name="unmaize">

• The file is too big to print in its entirety here, but at the bottom, there will be references to

other files, in tags that look like

<SimulaIncludeFile fileName="plantParameters/Maize/Maize/resources.xml" />

Just like in the file with environment parameters earlier, we change the references by changing

plantParameters/Maize/Maize/some-File.xml to

plantParameters/Unmaize/Unmaize/some-File.xml in all of these tags, which would change

the above tag to

<SimulaIncludeFile fileName="plantParameters/Unmaize/Unmaize/resources.xml" />

• Now we can enter our new parameters in the relevant files as explained in the previous

section.

3.7. Adding or removing root classes

Our new species, unmaize, might not have the same root types as maize so this means we need to

know how to add and remove root classes from the simulation. First we will add a new class of

laterals, called unlaterals, that branch from the primary root. Then we will explain how to remove root

classes.

• Open the file plantParameters/Unmaize/Unmaize/unmaize.xml, which contains the

branching rules. First we need to add the object generator for this new root. Find the

SimulaBase tag with name lateral, which contains a tag named branchlist. It should look like

this (edited down for clarity):

<SimulaBase name="lateral" objectGenerator="copyDefaults">

 <SimulaConstant type="integer" name="rootClassID">98</SimulaConstant>

 <SimulaBase name="branchList">

 <SimulaBase name="finelateral">

 <SimulaStochastic name="branchingFrequency" unit="cm" distribution="uniform"

minimum="0.15" maximum="0.35" />

 <SimulaConstant name="lengthRootTip" unit="cm"> 4</SimulaConstant>

 <SimulaConstant name="allowBranchesToFormAboveGround"

type="bool">false</SimulaConstant>

 </SimulaBase>

 </SimulaBase>

 <SimulaConstant name="density" unit="g/cm3">0.094</SimulaConstant>

</SimulaBase>

• Because the objectGenerator has value copyDefaults, OpenSimRoot will copy any parameter

that is not specified for this root class from another root class named defaults. Copying

parameters from other root classes is possible, see note 8. Copy this part of the file and paste it

just below it. Change lateral to unlateral in the copy and delete the content of the branchlist.

You should have added the following lines:

<SimulaBase name="unlateral" objectGenerator="copyDefaults">

 <SimulaConstant type="integer" name="rootClassID">98</SimulaConstant>

 <SimulaBase name="branchList">

 </SimulaBase>

 <SimulaConstant name="density" unit="g/cm3">0.094</SimulaConstant>

</SimulaBase>

• We want to be able to see the difference between laterals and unlaterals in the VTU/VTP, so

change the value for rootClassID to an unused value.

• Next, find the branchList subtag of the tag named primaryRoot. It is in the part of the file

that (edited down for clarity) looks like this:

<SimulaBase name="primaryRoot" objectGenerator="copyDefaults">

 <SimulaBase name="branchList">

 <SimulaBase name="lateral">

 <SimulaStochastic name="branchingFrequency" unit="cm" distribution="uniform"

minimum="0.25" maximum="0.45" />

 <SimulaConstant name="lengthRootTip" unit="cm">10.93</SimulaConstant>

 <SimulaConstant name="allowBranchesToFormAboveGround"

type="bool">false</SimulaConstant>

 </SimulaBase>

 </SimulaBase>

</SimulaBase>

• All the root classes listed in the branchlist are root classes that will branch from the primary

root. The distance between branches is determined by the branchingFrequency parameter

(change units to day to have branches appear at a certain temporal frequency). The

lengthRootTip parameter is the distance of the elongation zone, no branches will appear less

than this distance from the root tip. See note 7 for alternative types of branching.

• Copy the SimulaBase tags with name lateral and everything between (lines 3-8), paste it

above line 9 and change lateral to unlateral in the copy. You should now have added the

following line in between the branchList tags:

 <SimulaBase name="unlateral">

 <SimulaStochastic name="branchingFrequency" unit="cm" distribution="uniform"

minimum="0.25" maximum="0.45" />

 <SimulaConstant name="lengthRootTip" unit="cm">10.93</SimulaConstant>

 <SimulaConstant name="allowBranchesToFormAboveGround"

type="bool">false</SimulaConstant>

 </SimulaBase>

• Now we need to add all the parameters for this new root class. This means, that in each file in

the directory plantParameters/Unmaize/Unmaize/, we need to add an entry for our new root

class (unless default values are defined and we want to use those, see note 8). Like we did

above, the easiest is to copy the entry for the lateral root class and edit that. As an example,

this is what we would add to the file rootHairs.xml

<SimulaDirective path="unlateral">

 <SimulaTable name_column1="time since creation" unit_column1="day"

name_column2="rootHairLength" unit_column2="cm">0 0 1 0 2 0.028 2000 0.028</SimulaTable>

 <SimulaConstant name="rootHairDiameter" unit="cm">5e-4</SimulaConstant>

 <SimulaTable name_column1="time since creation" unit_column1="day"

name_column2="rootHairDensity" unit_column2="#/cm2">0 2000 1 2000 2 2000 10 2000 30 0 2000

0</SimulaTable>

</SimulaDirective>

Now we know how to add a root class, removing a root class is easy. Go through all the files

mentioned above and remove all tags and their content that have the name of that root class as either

name or path attribute. If you only want to disable (remove) the root class from the simulation, simply

comment out the entries you inserted in the branchList of the parent root class(es).

3.8. Graphical User Interface

Because editing input files can be cumbersome and confusing, as evidenced by the previous sections, a

graphical user interface (GUI) was developed that provides users with a more intuitive and

straightforward way of creating input files. This GUI can be found in the repository at

https://gitlab.com/rootmodels/opensimroottools. The GUI allows users to add root classes through a

couple of mouse clicks, and edit parameters without having to locate them in the input files. It also

automatically takes the dependencies between modules into account, which makes it less likely that an

invalid input file will be created. The GUI can be run on any system that has Python3 and the TkInter

package installed and has been tested to work on Windows and Linux systems. Run it from a

command window or terminal with the command

python GUIMainWindow.py

or

python3 GUIMainWindow.py

See figure 2 for an example of how the GUI looks on Windows 7. It should look similar on other

systems.

We will now briefly describe how to use the GUI to create your own input files.

• To create an input file based on one of the existing templates in the repository, or another file

you have, use the Import XML button in the top left. This will load the selected file, after

which you can adjust the parameters as you see fit.

• If you are starting from scratch, or wish to include a different set of modules, tick the relevant

boxes in the frame on the left. Please note that you might need to scroll down to see all

available modules.

https://gitlab.com/rootmodels/opensimroottools

• After having chosen the modules, use the frame in the bottom left to add the desired root

classes. To do this, select the parent root class of the root class you wish to add, type the name

of the root class in the text box in the bottom left and click either Add or Add Whorl,

depending on what type of branching is required. Root classes with the same name will share

the same parameters. To remove a root class, select it and press Delete. Note that the tiller

module requires a corresponding tiller root class to function.

• After selecting modules and adding root classes, edit the parameters. By selecting a root class

in the bottom left, you can access the parameters for that root class. To access parameters not

associated with a single root class, such as the simulation settings, shoot and soil parameters,

select Origin in the bottom left. You are recommended not to change parameters which you

do not understand.

• After everything has been changed according to your requirements, save the model to an XML

file with the Export to XML button. NB: You are advised to close the GUI after this and

open a new session if you wish to create more input files.

• The About button opens a new screen with information similar to this section.

• The Expert Mode tick box switches the GUI to expert mode. In expert mode, you can alter

more parameters as well as change the type of parameters. You are recommended not to use

expert mode unless you know what you are doing. If you’re not sure what this means, don’t

use expert mode.

• If you run into any bugs, issues or OpenSimRoot is not able to run the files created by the

GUI, please let the developers know by creating an issue at

https://gitlab.com/rootmodels/opensimroottools. Please be precise in your description so that

the error can be reproduced and please include any relevant files.

4. Notes

1.

OpenSimRoot uses the C++14 standard so older compilers might yield an error message similar to

https://gitlab.com/rootmodels/opensimroottools

unrecognized command line option '-std=c++14'

If this is the case, update your compiler to the newest version. The function interpreter is based on a

rather large header file, and compiling may require a bigobject option under Windows. In Visual

Studio it is the additional compiler option /bigobj and in gcc/mingw it is -Wa,-mbig-obj

2.

Since OpenSimRoot input files are generally quite large and need to adhere to a very specific structure,

it is common for new users to accidentally introduce errors when editing files. This will cause the

simulation to stop with an error message that will hopefully allow you to correctly diagnose and

correct the problem. The error messages always start with the class and method name that produced

the error, so you can locate in the code. The following list contains some common errors but it is by no

means exhaustive.

• Unit::check: someModule wants ’someParameter’ in someUnit but it has unit otherUnit

Solution: Change the unit of the relevant parameter.

• Database::get: Object ’someName’ requested by ??? but not listed in attribute list

’parent’. List of available names: name1, name2, name3

Solution: Something is missing from the XML, check in the listed location and add it.

• Database::store: Failed to store ’someName’. An object is already listed as attribute of

object ’parent’.

Solution: You have added two tags with the same name in the XML. Delete or rename one of

them.

• Database::setFunctionPointer: function ’someFunction’ not registered.

Solution: You have listed a function in the XML that OpenSimRoot does not know about.

Check if you have spelled it right, if the function exists in the source code and is registered.

Running OpenSimRoot with the -l option will list all registered functions.

• CarbonAllocation2Root: allocation < 0

Solution: Carbon production is lower than maintenance costs. The plant ran out of carbon.

This can be due to nutrient stress or faulty photosynthesis parameters, not enough light. Check

the carbon balance, or if you never want to run out of carbon, increase the seed size and set it

to never expire.

• CarbonAllocation2Shoot: allocation < 0, carbon production lower than respiration?

Solution: Same as the above.

• RelativeCarbonAllocation2ShootPotentialGrowth: Potential growth is negative

Solution: Same as the above. Check growth rules and make sure the growth rate does not

become negative due to stochastic multipliers or stress responses.

• WatFlow: Q[i] is NAN

Solution: There is either too much or too little water in a soil voxel, or there is a soil gradient

which is too steep. This is usually caused by too much or too little precipitation/evaporation.

• MichaelisMenten: Fluxdensity is not a number. Debugging info: x y z

Solution: Problem usually arises in the solute transport or water code. This is hard to debug,

but a finer resolution of the mesh or a smaller maximum time step may help.

If you encounter an error message that is not in this list, there are a few things you can do to resolve

them, most of which will require you to dig into the code.

• The error message might provide insight in how to resolve it. For example, if the following

error appears: CarbonAllocation2Shoot: allocation < 0, carbon production lower than

respiration? OpenSimRoot indicates that the amount of carbon produced by photosynthesis is

too low. This can be due to a variety of reasons, but it will point you in the right direction.

• Another option is to search the source code to see which class is generating the error message.

Most error messages will print the name of the relevant class, and by searching for (part of)

the error in the codebase, you should be able to find it.

• If just reading the relevant parts of the source code does not help, you can try adding in some

diagnostic messages that print relevant parameters to the terminal.

• Compiling a debug version of the source code, and then running it with a debugger can also

help to understand what is going on. Run the code and backtrack from the error message to see

what is causing the error.

• Finally, if you are certain that the error is not caused by mistakes in the input file, open an

issue on the OpenSimRoot repository page. Please make sure that you provide a full

description of the unintended behaviour and how to reproduce it. Bug reports are seen by all

the OpenSimRoot developers, so this is the most expedient way to get bugs resolved.

3. Example tabled output

Here is a selection of some lines from the tabled output of a maize simulation at day 38 (slightly edited

for readability).

name time value rate unit path

"averageDailyTemperature" 38.000 16.90000000 NA "degreesC"

 "//environment/atmosphere"

"plantNutrientUptake" 38.000 22571.36085292 1504.54742033 "umol"

 "//plants/maize-aerenchyma_1_1/nitrate"

"plantNutrientUptake" 38.000 546.35415547 43.10032538 "umol"

 "//plants/maize-aerenchyma_1_1/phosphorus"

"leafArea" 38.000 1138.74238252 50.74930913 "cm2"

 "//plants/maize-aerenchyma_1_1/plantPosition/shoot"

"plantDryWeight" 38.000 12.00440272 NA "g"

 "//plants/maize-aerenchyma_1_1"

"photosynthesis" 38.000 14.90710190 1.09622375 "g"

 "//plants/maize-aerenchyma_1_1/plantPosition/shoot"

"rootDryWeight" 38.000 5.45875002 NA "g"

 "//plants/maize-aerenchyma_1_1"

"rootLength" 38.000 28915.93549064 NA "cm"

 "//plants/maize-aerenchyma_1_1"

"rootSurfaceArea" 38.000 3777.82413565 NA "cm2"

 "//plants/maize-aerenchyma_1_1"

"rootVolume" 38.000 58.07180872 NA "cm3"

 "//plants/maize-aerenchyma_1_1"

"rootWaterUptake" 38.000 1489.05929962 109.57170509 "cm3"

 "//plants/maize-aerenchyma_1_1"

"shootDryWeight" 38.000 6.54565270 NA "g"

 "//plants/maize-aerenchyma_1_1"

"totalWaterInColumn" 38.000 72480.62036434 NA "cm3" "//soil/water"

4. XML tags

OpenSimRoot input files are written in the XML markup language format. XML is a structured format

that is both human-readable and machine-readable. XML files contain markup and content, the

markup is used to structure the content of the file. The building blocks that make up XML files are

called tags, similar to in HTML. There are three types of tags:

• Opening tags:

<SimulaBase>

• Closing tags:

</SimulaBase>

• Empty tags:

<SimulaBase/>

Everything between two tags of the same type is the content of that particular set of tags, which can

include other tags. Tags can also have attributes, for example, this is a tag with the attribute "name",

which has the value "example". It has "Example content" as content.

<SimulaBase name="example">Example content</SimulaBase>

5. OpenSimRoot XML tags

The tags used in OpenSimRoot input files are always of one of the following types. The type of the tag

depends on what it is used for.

• SimulationModel: This acts as the top-level tag. The rest of the input file should be a subtag

of a tag of this type.

• SimulaBase: This tag is used as a structural element, its only function is to contain other tags.

Tags of this type should always have the "name" attribute, which is used by the code to

navigate around the extensible tree structure, and might also have an objectGenerator

attribute, which specifies how object of this type should be generated.

• SimulaIncludeFile: This tag is used to split input files over multiple files, which allows for

separation of different sets of parameters into different files (e. g. the atmospheric parameters,

soil parameters and plant parameters). The only attribute this tag should have is "fileName",

which is a relative path to the relevant file. Everything between the

SimulationModelIncludeFile tags in the referenced file is inserted in the file in place of this

tag.

• SimulationModelIncludeFile: This tag is used as top-level tag in a file that is included

through using a SimulaIncludeFile tag, see above.

• SimulaDirective: This tag is used to refer to a different location in the XML file. It should

only have a "path" attribute. For all intents and purposes, everything in the content of this tag

behaves as if it is part of the content of the tag referenced in the path.

• SimulaConstant: This tag is used to store constants of different types. It should always have

the "name" attribute. Other common attributes are "unit" and "type". The constant stored in

the tag is given in the content. A tag of this type can store a numerical value, a string or a

coordinate.

• SimulaTable: This tag is used to save a "table" of information, a set of values, stored in the

second column, that depend on the values in the first column, often representing time or

distance. It should always have the attribute "name_column2", which functions as the name

attribute of other types of tags. Other common attributes are "name_column1",

"unit_column1", "unit_column2", "interpolationMethod" and "function". Tags of this type

are often used to store numerical values that change over time, like growth rates. The values

are given in the content of the tag, in the order you get when reading the table from left to

right, top to bottom.

• SimulaStochastic: This tag is used to let OpenSimRoot know that the value of this object

should be pulled from some random distribution. It should always have the attributes "name"

and "distribution". Depending on the distribution chosen, attributes like "min", "max",

"mean" and "stdev" should also be given. It also often has the attribute "unit".

• SimulaPoint: This tag is used for points whose location changes over time, like the root tips.

It should have the "name" and "function" attributes.

• SimulaDerivative: This tag is used for state variables that change dynamically during the

simulation. It should always have the "name" and "function" attributes and often has a "unit"

attribute. The "function" attribute tells OpenSimRoot which model to use for this state

variable.

• SimulaVariable: This tag is used for state variables that represented something that is

integrated over time. It should always have the "name" and "function" attributes and often

has a "unit" and "integrationFunction" attribute. This tag is used similarly to the

SimulaDerivative tag, with the difference that the value will be integrated over time.

• SimulaLink: This tag is used to link to a different part of the model, most often to the

parameters. It should always have the "name" attribute and often has the "unit" and

"linksName" attributes. It is often used for easy access to certain parameters or making sure

parameters are listed in the input file.

There is an XSD Schema provided in the repositories and online under

http://rootmodels.gitlab.io/OpenSimRoot/SimulaXMLSchema.xsd. The Schema describes the XML

http://rootmodels.gitlab.io/OpenSimRoot/SimulaXMLSchema.xsd

rules that are allowed in OpenSimRoot and allows an XML editor to have auto-completion that

conforms to the rules.

6. Modules

It is often most convenient to think of OpenSimRoot as a set of modules, each of which simulates a

certain process or feature of the root system. If you want to simulate a root system and include water

uptake in the simulation, this means you need to include a water module. There can be multiple

modules for the same process, each of them will model the relevant process differently and every

simulation will require different modules to be included. There are some dependencies between

modules; for example, you cannot simulate the nitrate flows through the soil without including the

water module. Every module generally corresponds to a small set of files in the repository, most of

which fall into the following categories:

• A template file that contains all the dynamic state variables with their associated plugins

required for the module to work.

• A file with plant-related parameters that the module requires.

• A file with environment-related parameters that the module requires.

We will now list some of the more important modules and their dependencies, if applicable.

• Minimal model: A minimal set of tags and input parameter needed to run a simulation that

includes a plant. Examples of relevant parameters are the simulation length and the time

interval between outputs. All other modules require this module to be present.

• Geometry: Contains plugins that keep track of geometric traits of roots, root segments and the

root system as a whole. The traits are root length, surface area and root volume. Most modules

require this module to be present.

• Dry weight: Contains plugins that calculate the dry weights of roots and shoots based on

volume and density. Relevant parameters are the densities or specific weights of different

plant organs. Most modules require this module to be present and you should always include

this and the above two in your simulations.

• Carbon: Simulates carbon production, allocation and limitations in the crop. Relevant

parameters include light use efficiency, seed size, maximum allocation rates and irradiation

rates.

• Respiration: Simulates the carbon costs of respiration, both in roots as well as shoots.

Relevant parameters are the respiration rates for different root classes and plant organs.

Requires the carbon module to be present.

• Exudation: Simulates the carbon costs of root exudation. Relevant parameters are the

exudation rates for each root class. Requires the carbon module to be present.

• Root hair: Simulates the growth of root hairs and the effect it has on nutrient uptake. Relevant

parameters are the root hair density, root hair length and root hair diameter.

• Phosphorus: Simulates phosphorus uptake rates. A Barber-Cushman version and a version

which couples to the soil water module are available, but since phosphorus is immobile, it is

recommended you use the Barber-Cushman version. Typical parameters include seed

phosphorus content, uptake parameters (Imax,Cmin,Km), soil phosphorus content, diffusion

rates and the soil buffer power.

• Water: Simulates soil water flow and crop water uptake. Several water uptake models are

available; if you have reasonable estimates of the root hydraulic conductivities it is

recommended you use the Doussan version, otherwise you can use the Hopmans version (not

recommended if you want to simulate a realistic water uptake distribution). Relevant

parameters include soil hydraulic parameters and initial water content, explicit or relative

transpiration rates (relative transpiration rates depend linearly on either leaf area or

photosynthesis rates), root hydraulic conductivities and various atmosphere-related

parameters. Requires either evaporation parameters or the evapotranspiration module to be

present, as well as the carbon module (if transpiration is related to photosynthesis rates).

• Evapotranspiration: Simulates various atmosphere-related processes based on the Penman-

Monteith equations. Calculates moisture evaporation from the topsoil and crop transpiration

rates. Requires the water module to be present.

• Nitrate: Simulates soil nitrate flow and uptake as well as nitrate mineralisation in the soil. A

Barber-Cushman version and a version which couples to the soil water module are available,

but since nitrate is mobile, it is recommended you use the version that couples soil nitrate flow

to the soil water flow. Typical parameters include initial soil nitrate content, seed nitrate

content, mineralisation parameters, uptake parameters (Imax,Cmin,Km), nitrogen fixation

rates (for legumes) and diffusion parameters.

• Potassium: Simulates soil potassium flow and uptake. A Barber-Cushman version and a

version which couples to the soil water module are available. Typical parameters include

initial soil potassium content, seed potassium content, uptake parameters (Imax,Cmin,Km)

and diffusion parameters.

• Root cortical aerenchyma: Simulates the formation and effect of root cortical aerenchyma.

Typical parameters include aerenchyma formation rates and parameters related to the effects

of aerenchyma, such as reduction in respiration rates and remobilisation of phosphorus.

• Root cortical senescence: Simulates root cortical senescence and its effects. Typical

parameters include the cortical senescence rates and the effects of it on radial hydraulic

conductivity.

• Nutrient stress: Simulates the effects of nutrient deficiency on plant growth and functioning.

Relevant parameters include the minimum and optimal nutrient contents for each plant organ

and parameters relating the nutrient stress levels to modifiers that modulate plant functioning.

Requires at least one nutrient module to be present.

• Local nutrient responses: Simulates root responses to local nutrient concentrations. Typical

parameters include transfer functions that relate local nutrient concentrations to branching

rates, root elongation rates and gravitropism. Requires at least one nutrient module to be

present.

• Tiller: Simulates the formation of tillers and roots emerging from these tillers. Typical

parameters include number of tillers and tiller roots, emergence times of tillers, tiller root

types (with associated parameters) and parameters for the tiller emergence pattern.

7. Including whorl roots

If the branching parameters are given as in the example in the text, new branches will emerge along

the root as it grows, at the intervals specified. However, some crops have roots that do not emerge like

this, but in a "whorl" of roots that all emerge at roughly the same time. Examples are the nodal roots in

maize. For this branching pattern, add the following lines to the branchlist of the parent root:

<SimulaBase name="nodalroots">

 <SimulaConstant type="integer" name="numberOfBranches/whorl" unit="#">3</SimulaConstant>

 <SimulaConstant type="integer" name="maxNumberOfBranches" unit="#">3</SimulaConstant>

 <SimulaConstant type="time" name="branchingTimeOffset" unit="day">9.</SimulaConstant>

 <SimulaConstant name="branchingSpatialOffset" unit="cm">1.5</SimulaConstant>

</SimulaBase>

Here the first two parameters are the number of branches in the root whorl, the third parameter is the

emergence time of the roots and the final parameter is the distance from the base of the parent root

where the roots will appear.

8. Defining and using classes of default parameters

Any root class that is declared in the main parameter file (which was called unmaize.xml in our

example) with copyDefaults as “objectGenerator” attribute will use the default parameters if none

are provided. It is possible to define different classes of default parameters, which is useful if you want

all the major roots to use one set and all the laterals to use another. In the root class declaration, you

can tell it to use parameters from a certain default group with the following tag

<SimulaConstant type="string" name="copyDefaultsFrom">../defaultsMajorAxis</SimulaConstant>

To declare the default parameters for this group, which is named defaultsMajorAxis, simply add

parameters like you would for any root class but use defaultsMajorAxis as the root name. Like this:

<SimulaDirective path="defaultsMajorAxis">

 <SimulaTable name_column1="time since creation" unit_column1="day"

name_column2="rootHairLength" unit_column2="cm">0 0 1 0 2 0.028 2000 0.028</SimulaTable>

 <SimulaConstant name="rootHairDiameter" unit="cm">5e-4</SimulaConstant>

 <SimulaTable name_column1="time since creation" unit_column1="day"

name_column2="rootHairDensity" unit_column2="#/cm2">0 2000 1 2000 2 2000 10 2000 30 0 2000

0</SimulaTable>

</SimulaDirective>

References

(1) Dunbabin Vanessa M., Postma Johannes A., Schnepf Andrea, et al. (2013) Modelling root-soil

interactions using three-dimensional models of root growth, architecture and function. Plant and Soil

372(1-2), 93–124

(2) Dunbabin Vanessa M., Diggle Art J., Rengel Zdenko, et al. (2002) Modelling the interactions

between water and nutrient uptake and root growth. Plant and Soil 239(1), 19–38

(3) Gérard Frédéric, Blitz-Frayret Céline, Hinsinger Philippe, et al. (2017) Modelling the interactions

between root system architecture, root functions and reactive transport processes in soil. Plant and Soil

413(1-2), 161–180

(4) Javaux Mathieu, Schröder Tom, Vanderborght Jan, et al. (2008) Use of a threedimensional detailed

modeling approach for predicting root water uptake. Vadose Zone Journal 7(3), 1079

(5) Leitner Daniel, Klepsch Sabine, Bodner Gernot, et al. (2010) A dynamic root system growth model

based on l-systems. Plant and Soil 332(1-2), 177–192

(6) Lobet Guillaume, Pagès Loïc, Draye Xavier (2014) A modeling approach to determine the

importance of dynamic regulation of plant hydraulic conductivities on the water uptake dynamics in

the soil-plant-atmosphere system. Ecological Modelling, 290, 65–75

(7) Pagès Loïc, Vercambre Gilles, Drouet Jean-Louis, et al. (2004) Root typ: a generic model to depict

and analyse the root system architecture. Plant and soil 258(1), 103–119

(8) Pierret Alain, Doussan Claude, Capowiez Yvan, et al. (2007) Root functional architecture: A

framework for modeling the interplay between roots and soil. Vadose Zone Journal 6(2), 269

(9) Wu L., McGechan M. B., McRoberts Neil, et al (2007) Spacsys: integration of a 3d root

architecture component to carbon, nitrogen and water cycling—model description. Ecological

Modelling 200(3-4), 343–359

(10) Bingham Ian J., Lianhai Wu (2011) Simulation of wheat growth using the 3D root architecture

model SPACSYS: Validation and sensitivity analysis. European journal of agronomy 34(3), 181-189

(11) Berntson G. M. (1994) Modelling root architecture: are there tradeoffs between efficiency and

potential of resource acquisition? New Phytologist 127(3), 483-493

(12) Postma Johannes A., Lynch Jonathan P. (2012) Complementarity in root architecture for nutrient

uptake in ancient maize/bean and maize/bean/squash polycultures. Annals of botany 110(2), 521-534

(13) Postma Johannes A., Dathe Annette, Lynch Jonathan P. (2014) The optimal lateral root branching

density for maize depends on nitrogen and phosphorus availability. Plant physiology 166(2), 590-602

(14) Postma Johannes A., Kuppe Christian, Owen Markus R., et al (2017) Opensimroot: widening the

scope and application of root architectural models. New Phytologist 215(3), 1274-1286

(15) Schnepf Andrea, Black Christopher K., Couvreur Valentin, et al (2020) Call for participation:

Collaborative benchmarking of functional-structural root architecture models. The case of root water

uptake. Frontiers in Plant Science 11

Figure captions

1. A maize root system simulated by OpenSimRoot and visualised by ParaView. The different

colours indicate the age of the root segment, with blue segments being the oldest and red

segments the youngest.

2. The OpenSimRoot input file generation GUI as it looks on Windows 7.

